skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "O'Hara, Sabin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Enormous amounts of data are generated each day by sensor devices. In agriculture, these devices continuously monitor numerous environmental properties in the fields of aquaponics, hydroponics, and soil-based food production. Data stream mining is the process of extracting data from continuous, rapidly sampled data sources. The data accuracy that can be achieved in data stream mining is highly dependent on the algorithm chosen to suppress noise. For threshold-based automation, an actuator can be activated when the value of sensor data is above a permissible threshold. Noise from sensors may activate the actuator. Several statistical and machine learning-based noise- suppression algorithms have been proposed in the literature. The proposed LSTM (Long Short-Term Memory) filter performs better noise suppression than other traditional filters – Kalman and moving average filters. The LSTM filter is installed in our threshold-based aquaponics automation to maximize sustainable food production at minimum cost. 
    more » « less